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Abstract. To build autonomous robots able to live and interact with
humans in a real-world dynamic and uncertain environment, the design
of architectures permitting robots to develop attachment bonds to hu-
mans and use them to build their own model of the world is a promising
avenue, not only to improve human-robot interaction and adaptation
to the environment, but also as a way to develop further cognitive and
emotional capabilities. In this paper we present a neural architecture to
enable a robot to develop an attachment bond with a person or an ob-
ject, and to discover the correct sensorimotor associations to maintain
a desired affective state of well-being using a minimum amount of prior
knowledge about the possible interactions with this object.

1 Introduction

The question of how autonomous robots could be integrated in our everyday life
is gaining increasing attention. To that end, robots will have to be able to exhibit
adaptive and complex behaviors, and our view is that they should be able to learn
without the constant explicit instruction of a teacher, but that they should rather
develop in interaction with humans and learn from this interaction [1]. Robots
will need to constantly learn how to react in different situations and environments
with a minimal quantity of prior knowledge present in their behavioral systems.
A key element towards this goal is the integration of emotional and affective
factors in these interactions [2, 3] as a way to guide development and learning.
Indeed adding emotional values to different contexts is a way to help robot during
the decision-making process [4]. Moreover, in potentially dangerous situations,
emotions have been proven to be helpful and even crucial for autonomous robots
to survive in a competition for resources [5].

The design of architectures for autonomous robots to endow them with be-
havioral responses related to attachment bonds is a promising avenue, not only
to improve human-robot interaction but also as a way to develop further cog-
nitive and emotional capabilities. It is known that affective bonds are crucial
during the development of human infants and young mammals [6]. According



to Bowlby’s theory [7], a secure attachment bond helps infants during their de-
velopment. It is known to foster exploratory behaviors, which are essential for
the infant to build a coherent and stable internal model of the environment.
It is also needed for the physical development of some brain areas to be dam-
age free, since the lack of a secure attachment could lead later to psychological
disorders [8]. Moreover, from a human-robot interaction point of view, a robot
that explores its environment with confidence thanks to its history of affective
interactions with humans has the advantage of being self-driven since the robot
would have an internal motivation urging it to discover and later understand its
environment.

A successful robotic implementation of a model of attachment bonds and
its implication in exploratory behavior was presented in [4, 9]. This work took
inspiration from the imprinting phenomenon first described by Konrad Lorenz in
the case of birds [10]. During the early days of life, an attachment bond develops
between young birds and persons or objects to which the animals have been
exposed. As a consequence, the birds follow the movements of the imprinted
object or person. In this early attachment experience, the imprinted object acts
as a sort of security mechanism for birds during exploration; moreover, the simple
fact of following the imprinted object helps them discover their environment
faster and without any explicit teaching by the imprinted object or person.

Modeling this phenomenon with autonomous robots showed that they could
benefit from the advantages provided by imprinting to guide their first steps in
an unknown environment and as a mechanism to bootstrap affective interactions
with humans. However, in our previous model, the robot had already hardcoded
or “pre-wired” in its system the know-how to follow the imprinted object. From
an epigenetic perspective of development, letting the robot discover and learn by
itself how to maintain the imprinted perception—being at the “right” distance
from the imprinted object in our case—would be a more plausible approach to
model early attachment in humans and other complex mammals, which is closely
related to imprinting in birds but slightly different. Indeed, in more complex
species in which newborns are less developed when they leave the maternal
environment, learning from experience and interactions with the environment
plays a crucial role to achieve normal development.

In the remainder of this paper, we present such an architecture that allows
a robot to imprint a person (or a moving object) present in front of it when it is
turned on and then to learn, without any external reinforcement, how to follow
the imprinted object. We tested this architecture using two types of robots—an
Aibo and a Koala—and here we present and discuss in detail the results obtained
in the latter experimental setting.

2 Robot Architecture

Our architecture follows a “Perception-Action” approach [11], which postulates
that perception and action are tightly coupled and coded at the same level. Ac-
tion is thus executed as a “side-effect” of wanting to achieve, improve or correct
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Fig. 1. Our action selection and learning architecture for imprinting.

some perception. The perception-action loop can be seen in terms of homeostatic
control, according to which behavior is executed to correct perceptual errors. Ac-
tions that allow to correct different perceptual errors are selected on the grounds
of sensorimotor associations that can be “hardcoded” by the designer (e.g., in a
look-up table, as in [11, 4]) or learned from experience by the robot, as it is our
case here—our robot extracts sensory-motor associations led by its motivation
to keep the imprinted object at a constant distance, and using a combination
of associative learning and action selection. We have also taken inspiration from
[12] regarding ideas on the relation between affective states and homeostasis.
Figure 1 shows our architecture, implemented using a neural network consisting
of neural groups that fulfill different functions, as explained in the remainder of
this section.

2.1 Imprinting System

The imprinting system learns the value of the initial distance between the robot
and the object in front of it. This neural group contains only one output neuron,
which has its output equal to the learned distance value. The imprinting group
learns using a modified Rescorla-Wagner conditioning rule [13] with a decreasing
global learning rate to achieve stabilization, as follows:

wij(t) = wij(t− 1) +
α

(β × t)
× (Pd − Pc) (1)

with:

wij(t) the weight of the link between input neuron i of the distance perception
system group and neuron j of the imprinting group.



α the learning rate here equal to 0.2
β the learning rate’s decay rate equal to 0.05
Pd the current output of the ith neuron of the distance perception group
Pc the current output of the jth neuron of the imprinting group

When the global learning rate, α
(β×t) , reaches a value below 0.001, the output

of the imprinting group remains unchanged until the end of the experiment, thus
achieving stability in the computation of the perceptual error and its derivative.

2.2 Perceptual Categorization System

Our robot must learn to associate its relative position with respect to the im-
printed object to the action to be taken to correct its perceptual error. For this,
it must first calculate its perceptual error, then assess what type of error it is,
to be able to choose the right corrective action.

Perceptual Error. To modulate the response of the system according to the
discrepancy between the current perception and the imprinted one, we compute
the current perceptual error (Ep) between the imprinted perception (a distance)
and the current one as follows:

Ep = Pi − Pc (2)

with:

Pc the current perception value (the current value of the distance sensors in the
case of the Koala setup)

Pi the imprinted perception value (the value of the distance sensors during the
imprinting phase)

We now use this value to evaluate a smooth derivative of the perceptive error
as follows:

dEp

dt
= e(τ1)− e(τ2) (3)

with: e(τ) = e(τ−1)×τ+Ep

τ+1 the average value of Ep over τ time steps, τ1 = 2,
and τ2 = 4

The neuronal group computing these values has 2 output neurons, one for
the opposite of the perceptual error, Ē, and one for the smooth derivative of it,
dĒ. These two neurons have the following output functions:

Ē =
{

0 if E2
p < θ1

E2
p otherwise

where θ1 is chosen to provide an interval where the system considers its
perception to be the correct one, i.e. the imprinted perception.

dĒ = −dEp

dt



Perceptual Categorization. Since we want our robot to be able to associate
its relative position with respect to the imprinted object to the action to be
taken to correct its perceptual error, we project the actual value of the distance
sensors into three categories: too far from the object, too close to it, and correct
distance (the one in which Ē = 0). Therefore this neural group contains three
neurons, one for each category. Although this categorization could have been
achieved on line, by the system itself, we decided to use a fixed one in this case
in order to focus on the problem that is our object of study here—the perception-
action pairing. The output of this neural group is used as an input for the action
selection one.

2.3 Action Selection

The task of the action selection module is to learn how to maintain the desired
perception, the one learned by the imprinting module. Therefore, it needs to
select the correct action according to the actual distance perception. To this
end, the latter is fully connected to a Winner-Take-All (WTA) group of neu-
rons. This group receives also two modulatory inputs from the perceptual error
group, dĒ and Ē, and proprioceptive feedback from a motor output group which
displays the real action that has been executed. This signal acts as the teaching
signal for the learning module. The input dĒ is used as a kind of reinforcer
helping the system to learn associations between the active perceptual category
and the action that has been produced. The association between a perceptual
category and an action that makes the perceptive error decrease (dĒ > 0) will
be strengthened, whereas the association between a perception and an action
that makes the perceptive error increase (dĒ < 0) will be weakened. The initial
weights between the perceptual categories and the WTA are initialized to small
random values. The WTA group contains two output neurons, one for the action
of going forward and one for going backward. Hence the WTA group learns using
a modified Hebbian rule and produces outputs as follows:

wij(t) = wij(t− 1) + α× d̄E ×Oj × xi (4)

with:

wij(t) the weight of the link between input neuron i of the distance system
group and neuron j of the WTA action selection group initialized with small
random values.

α the learning rate, here equal to 0.2
dĒ the opposite of the derivative of the perceptual error
Oj the proprioceptive feedback from the motor output group
xi the output value of the ith neuron of the (distance) perception group

The motor output group uses the output of the WTA to compute the speed
of the robot. However, if the perceptual error is null, we want the system to
remain static, as in [9]. For this, we use the value of |Ē| to modulate the value



of the motor output. This value is a real integer, and will have the effect of
going forward when positive, backward when negative. In order to avoid abrupt
changes in the speed of the robot, we need to produce a smooth motor output;
the value of the motor output is filtered as follows:

M(t) = M(t1) + α(Md −M(t− 1)) (5)

with the selected motor output Md computed as:

Md = |Ē| × V (6)

where V , the current direction of the robot, equals −1 when going backwards,
1 when going forward. This value is directly computed using the outputs of the
WTA group.

2.4 Action Selection and Learning Algorithm

At the beginning of the “life” of the robot (for a short period after it is turned
on) no action is taken in order to allow imprinting to take place. Then the
system works in two phases. During the first phase, that we could call the action
selection phase, all groups have their outputs updated and then an action is
executed. During the second one, that we could call the learning phase, the
perceptual error and its derivative are updated, and the action selection WTA
group learns the consequences of its last action, the weights from the distance
perceptual group are updated.

1st Phase:

1. The perceptual categorization neural group has its outputs matching the
current distance sensors values, and the current position—too far, too close
or correct—is compared with the desired perception.

2. The action selection neural group has its output updated, deciding which
action is to be taken based on the current perception and the current per-
ceptual error. If the error is null, the action is inhibited.

3. The motor neural group (labeled “Executed action” in Figure 1), executes
the action, sending the new value of the speed—negative, positive or equal
to zero—to the actuators.

2nd Phase:

4. The perceptual group has its outputs unchanged to match the previous per-
ception state.

5. The perceptual error and derivative are updated.
6. The action selection group has its weights updated according to the previous

learning rule.
7. Then the loop iterates again.



3 Experiments and Results

3.1 Experimental setup

To test our system, we used two different types of robots and settings: an Aibo
and a Koala. In both cases we used a one-dimensional task, in which the robot
became imprinted to an experimenter playing the role of a caretaker placed in
front of it. In the case of the Aibo, using the camera, the robot became imprinted
to a ball held and moved by the experimenter and it learned to follow the ball
with movements of its head, while attempting to correct the perceptual error—
the difference between the actual position of the ball in its visual field, and the
position it had when it was imprinted. In the case of the Koala, the experimenter
was standing and moved forward and backwards in front of the robot; the Koala
used its infrared sensors to detect the experimenter and had to learn to move
with (follow or back up from) the experimenter while trying to maintain the
distance at which it had been imprinted. In this paper we report our scenario
and results using the Koala.

The experiment starts by turning on the robot in front of the caretaker, and
none of them moves for a small period of time during which the initial imprinting
takes place. After this phase, if the caretaker doesn’t move, the perceptual error
of the robot remains equal to 0 and therefore no movement is produced. Then
after a few seconds, the caretaker moves away from the robot. The robot will
then execute the action selected as winner output by the action-selection group.
If the action executed makes the perceptual error decrease, then the robot will
learn that this action is the correct one to execute in that situation—in this
particular example approach the caretaker, resulting in a following behavior. If
the action executed is not the correct one, after few timesteps the robot will
choose to execute another action and, if it corrects the perceptual error, it will
learn that it is the correct action to execute in that situation.

3.2 Results

During this experience, we recorded the values of the distance perception, the
square error between the desired perception and the current one, the derivative of
the latter and the values of the weights between the categorized perception and
the action to do. Figure 2 shows an example in which the caretaker approached
the robot, getting closer than the distance the robot was imprinted to. As we
can see, the weight value, associated here with the action of backing up from the
caretaker, increased correctly during the experiment. More specifically, if we look
closer in the rectangular boxes labeled 1 in the figure, we can observe that the
weight value increases when the derivative of the perceptual error is negative,
which happens when the square perceptual error decreases—in this case, when
the caretaker slowly approached the robot.

The caretaker then stopped moving, the robot went slowly backwards and,
since the derivative of the error was negative, the association between this situa-
tion and the action of going backwards was strengthened, and the robot reached
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Fig. 2. Evolution of (from top to bottom): perception of the distance, square and
derivative of the perceptual error, and the association weight between perception and
action, producing in this case the behavior of backing up from the imprinted object as
it gets too close.

again the desired perception and stopped moving. When the caretaker tried
again to move closer to the robot—the moment inside the rectangular box la-
beled 1′—the robot quickly reached the desired perception again, showing us
that the correct association had been learned. The caretaker then moved closer
to the robot again, but this time very quickly. We can see in the box labeled
2 that inducing this quick perturbation provoked a decrease in the association
learned, the weight value decreases first. But since no other action had been as-
sociated as the correct action in that situation, the robot moved backward again,
and the association is again reinforced with an even higher value than before.
The same effects were observed with the opposite perturbation—the caretaker
quickly moving away from the robot. It is interesting to note that our learning
system is influenced by the intensity of the perturbation and its length. If the
experimenter were to move further and further away from the robot, this system
would not be able to learn how to follow it. But in a step-by-step manner, it
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Fig. 3. Evolution of the perception of the distance, the derivative of the perceptual
error, and the other association weights.

learns with increasing accuracy the correlations between the perception it wants
to reach and the correct action to do.

In Figure 3, we can observe the evolution of the other association weight
values during the experiment. The weights labeled 1 and 5 are those related
to the correct perception category. Hence, no evolution is observed due to the
modulation of the motor output by the square error. The remaining two weights
are those related to the two other categories—being too far from or too close to
the imprinted object. These association weights are linked to incorrect actions
to produce in these two cases, and we can observe that their values are very
negative, indicating that the system discovered that they are the opposite of the
actions to do in these cases.

4 Discussion

This system described here allows a robot to learn how to maintain a desired
perception, and therefore to follow its caretaker around, without any prior knowl-



edge of how to do so, as opposed to having this knowledge “pre-wired” as in [4,
1]. We have seen that it learns fast, without having to try the different actions
several times as in other delayed reinforcement systems. However, our system
cannot be easily compared to such architectures or to other learning-based sys-
tems. To our knowledge, only the architecture presented in [14], which learned
new sensorimotor associations without explicit reinforcement in the case of a
teacher-student interaction (a robot learning to imitate the arm movements of a
human teacher), presents some similarities with ours. An internal reinforcement
was built based on the prediction error of the rhythm of the interactions, and
used to evaluate the confidence in the current sensorimotor associations of the
system. If the rhythm of the interaction was correctly predicted the associations
were strengthened, otherwise they were weakened. One major difference in the
learning system was the introduction of noise on the weights of the untrusted
associations to help the sytem explore and find the correct ones. With our ar-
chitecture, each time a perturbation in the homeostasis of the system is induced
by the experimenter, there is no way for the robot to distinguish whether this
perturbation is a consequence of its own action or not. That is why the asso-
ciation weights decrease during this perturbation. If the task to learn was very
sensitive to these perturbations, meaning that the weights of the associations
had very close values, our system would have to learn again the association
after each external perturbation. Adding a way for our robot to discriminate
between perturbations due to external causes (e.g. the actions of the caretaker)
or internal causes (typically the actions of the robot), although far from being
a trivial problem, would be a natural future extension to our system from a
developmental perspective.

This problem of external perturbations is also related to how caretakers re-
spond to infants’ demands. It seems natural that the experimenter acting as a
caretaker would have to adapt his/her behavior to that of the robot. For ex-
ample, if the caretaker were not to wait for the robot to learn how to follow
him/her, we could say that the caretaker would not be responding correctly to
the needs of the robot in terms of interactions. The appropriate behavior for the
caretaker would be to wait for the robot to reach the desired perception and to
have the time to learn how to reach that perception (i.e. which action to execute
to do so in that situation), and to follow the caretaker at a constant distance,
by trying different actions in a sort of “motor babbling”, so that the robot can
be in a good emotional state, without the distress of the absence of the care-
taker. The interactions involved in this simple learning task are comparable to
mother/infant interactions during the first year, and are particularly relevant to
investigate Bowlby’s notion of secure-insecure attachment [7] and its influence
in the development of emotional and cognitive capabilities, such as openness
towards the world and curiosity.

Our system uses the derivative of the perceptual error to directly modulate
the associations that are to be strengthened. A similar approach has been used
to orient a robot towards a situation were the robot could learn new affordances
[15]. This system helped the robot exhibiting a behavior that could be termed



“curiosity”, since the robot remained in situation until nothing new could be
learned and then switched to another task during which the consequences were
not known by the system. Our system uses this notion to learn how to reach a
desired perception related to the proximity to a caretaker in which its emotional
state is satisfying.

5 Conclusion and Future Work

We have shown that the system presented in this paper is able to learn the
consequences of its actions led only by the tendency to maintain a perception
associated with the presence of a caretaker. We have applied this system to
reproduce the imprinting phenomenon, going beyond previous work [4, 1] as in
this case the robot learns what to do to interact with the caretaker in order
to maintain the imprinted perception, rather than assuming that knowledge is
“pre-wired”. In future work, further developing previous work [16], we plan to use
this artificial affective bond to help the robot explore its environment with the
assurance of having a familiar perception to comfort the robot in new situation
that could be dangerous or stressful. In terms of cognitive architecture, to extend
our system to more complex skills and learning tasks, we will introduce the use
of multiple modalities for the recognition of and interaction with the caretaker.

This first experiment exhibits already some features characteristic of mother-
infant interactions. In future work, we would like to explore how the quality of
such interactions, particularly in terms of Bowlby’s notion of secure-insecure
attachment [7], influences further development. A first direction to explore in
this respect would be to study the influence of factors such as a different learn-
ing rate or a different learning rule. Another direction would concern the in-
fluence of the quality of the robot-caretaker interactions on the development of
emotional-cognitive capabilities such as curiosity. When the robot reaches its
desired perception, it also moves towards a positive state of well-being, and this
can be reflected by a “pleasure” parameter. Using associative learning applied
not to sensory-motor associations but to emotional states, the robot could learn
to associate this pleasure with the fact of choosing an action that makes its
perceptual error decrease, and this could lead to the emergent property of being
curious. Following this developmental approach should permit later on in the
“life” of the robot to analyze how “personality” features such as curiosity (or
the lack of it) can be related to early infancy experiences, particularly in terms
of the interaction styles of the caretakers.
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1. L. Cañamero, A. Blanchard, and J. Nadel. Attachment bonds for human-like
robots. International Journal of Humanöıd Robotics, 2006.
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